From 1 - 10 / 225
  • This Feature Class contains Common Risk Segment (CRS) polygon features denoting a qualitative assessment of the confidence with which the "K90" seismic horizon has been mapped in sedimentary basins in the Northwest Province (Taranaki, Deepwater Taranaki, and Reinga-Northland basins). Confidence is depicted by a relatively simple "traffic-light" system: green colours denote high confidence, orange denotes moderate confidence, and red colours denote low confidence. For more information about these data please refer to: Arnot, M.J. and Bland, K.J. et al. (Compilers), 2016. Atlas of Petroleum Prospectivity, Northwest Province: ArcGIS geodatabase and technical report. GNS Science Data Series 23b.

  • This Feature Class contains contours that depict the interpreted depth below sea level in milliseconds two-way-time (TWT) to the K80 (c. 84 Ma; Late Cretaceous; New Zealand near-base Haumurian Stage) horizon in the Northwest Province of the Atlas of Petroleum Prospectivity (namely the Taranaki, Deepwater Taranaki, and Reinga-Northland basins). For more information about the seismic horizon naming scheme used in this project please refer to: Strogen, D.P.; King, P.R. 2014. A new Zealandia-wide seismic horizon naming scheme. Lower Hutt, NZ: GNS Science. GNS Science report 2014/34. 20 p. The TWT grids, from which these contours were derived, were generated in Paradigm 2015 SeisEarth software using an adaptive fitting algorithm and a grid resolution of 1 km x 1 km. Faults have not been incorporated into the regional-scale gridding of the TWT maps in this project. The TWT grids were then exported from SeisEarth (Zmap format), checked for internal consistency in Zetaware (Trinity 4.61), edited as needed to account for gridding errors and then exported as ArcView Ascii grids, imported and contoured with Esri's ArcGIS software. Contour spacing is 250 ms. Given the considerable variability in the spacing and density of 2D seismic data over the entire NWP area the "smoothness" of the TWT maps varies accordingly. In the central Taranaki Basin, where seismic line spacing may be 5 km or less, the 1 km x 1 km grid resolution captures the geological complexity well. However, in areas of the NWP such as the Deepwater Taranaki Basin to the west and Reinga Basin in the north, seismic line spacing may be in the order of 15 to 30 km. In such areas the underlying geological complexity is only captured where seismic interpretation exists along the available 2D seismic lines. For further information on these data, please refer to: Arnot, M.J. and Bland, K.J. et al. (Compilers), 2016. Atlas of Petroleum Prospectivity, Northwest Province: ArcGIS geodatabase and technical report. GNS Science Data Series 23b.

  • This Feature Class presents available open-file age, lithostratigraphic formations, thickness, lithology, paleobathymetric and data source information for petroleum exploration wells relevant to the 62 Ma paleogeographic map.

  • This layer comprises geological unit data for Antarctica. It represents a synthesis of existing published and unpublished mapping of the geology of this area in a single dataset at a regional scale. These data comprise polygon geometry with each polygon having attributes describing the unit type, name, age, lithology, stratigraphy, and supporting background information, where this is known. This layer complies with the GeoSciML Lite standard for GeologicalUnitView and fields required by that standard were populated using the CGI Controlled Vocabulary (v2016.01). DOI: https://doi.org/10.21420/G6PG-J931 Cite dataset collection as: Cox, S. C., Smith Lyttle, B., & SCAR GeoMAP Action Group. (2019). ATA SCAR GeoMAP geology (v.2019-07). GNS Science. https://doi.org/10.21420/G6PG-J931

  • This Feature Class contains Common Risk Segment (CRS) polygon features for denoting the risk of reservoir rocks being absent at the 77 Ma (Late Cretaceous) level in sedimentary basins in the Northwest Province (Taranaki, Deepwater Taranaki, and Reinga-Northland basins). Risk is depicted by a relatively simple "traffic-light" system: green colours denote low risk, orange denotes moderate risk, and red colours denote high risk. It is important to note that a rating of high risk (red) for this petroleum systems element does not conclusively rule it out; rather, it indicates that on the basis of currently available open-file information there is a high risk for that factor being able to effectively contribute to the petroleum system in that area. For any given prospective area, more detailed work and data acquisition would be required. For more information about these data please refer to: Arnot, M.J. and Bland, K.J. et al. (Compilers), 2016. Atlas of Petroleum Prospectivity, Northwest Province: ArcGIS geodatabase and technical report. GNS Science Data Series 23b.

  • This layer shows the location of the interpreted subsurface extent of the subducted western and southern edges of the Hikurangi Plateau. The layer was newly-compiled for, and is part of, the 'Tectonic map of Te Riu-a-Māui / Zealandia' 1:8 500 000 dataset.

  • This Feature Class depicted generalised outlines, at a continental scale, of the major prospective and producing petroleum sedimentary basins within the New Zealand region. The basin boundaries depicted here are updated from those provided to the Ministry of Economic Development (2010).

  • This Feature Class contains Common Risk Segment (CRS) polygon features for denoting the risk of source rocks being absent within the Paleocene succession in sedimentary basins in the Northwest Province (Taranaki, Deepwater Taranaki, and Reinga-Northland basins). Risk is depicted by a relatively simple "traffic-light" system: green colours denote low risk, orange denotes moderate risk, and red colours denote high risk. It is important to note that a rating of high risk (red) for this petroleum systems element does not conclusively rule it out; rather, it indicates that on the basis of currently available open-file information there is a high risk for that factor being able to effectively contribute to the petroleum system in that area. For any given prospective area, more detailed work and data acquisition would be required. For more information about these data please refer to: Arnot, M.J. and Bland, K.J. et al. (Compilers), 2016. Atlas of Petroleum Prospectivity, Northwest Province: ArcGIS geodatabase and technical report. GNS Science Data Series 23b.

  • This Feature Class contains Common Risk Segment (CRS) polygon features for denoting the risk of reservoir rocks being absent within the Eocene succession in sedimentary basins in the Northwest Province (Taranaki, Deepwater Taranaki, and Reinga-Northland basins). Risk is depicted by a relatively simple "traffic-light" system: green colours denote low risk, orange denotes moderate risk, and red colours denote high risk. It is important to note that a rating of high risk (red) for this petroleum systems element does not conclusively rule it out; rather, it indicates that on the basis of currently available open-file information there is a high risk for that factor being able to effectively contribute to the petroleum system in that area. For any given prospective area, more detailed work and data acquisition would be required. For more information about these data please refer to: Arnot, M.J. and Bland, K.J. et al. (Compilers), 2016. Atlas of Petroleum Prospectivity, Northwest Province: ArcGIS geodatabase and technical report. GNS Science Data Series 23b.

  • This Feature Class contains contours that depict the interpreted vertical thickness (isochore) in metres between the P00 and P10 seismic horizons mapped within the Northwest Province of the Atlas of Petroleum Prospectivity (namely the Taranaki, Deepwater Taranaki, and Reinga-Northland basins). This isochore interval encompasses rocks of c. 66-56 Ma age (Paleocene). For more information about the seismic horizon naming scheme used in this project please refer to: Strogen, D.P.; King, P.R. 2014. A new Zealandia-wide seismic horizon naming scheme. Lower Hutt, NZ: GNS Science. GNS Science report 2014/34. 20 p. The depth and isochore grids, from which these contours were derived, were generated in Paradigm 2015 SeisEarth software using an adaptive fitting algorithm and a grid resolution of 1 km x 1 km. Faults have not been incorporated into the regional-scale gridding of the TWT or depth maps in this project. The TWT and depth grids were then exported from SeisEarth (Zmap format), checked for internal consistency in Zetaware (Trinity 4.61), edited as needed to account for gridding errors and then exported as ArcView Ascii grids, imported and contoured with Esri's ArcGIS software. Contour intervals are 250 m. Given the considerable variability in the spacing and density of 2D seismic data over the entire NWP area the "smoothness" of the depth maps varies accordingly. In the central Taranaki Basin, where seismic line spacing may be 5 km or less, the 1 km x 1 km grid resolution captures the geological complexity well. However, in areas of the NWP such as the Deepwater Taranaki Basin to the west and Reinga Basin in the north, seismic line spacing may be in the order of 15 to 30 km. In such areas the underlying geological complexity is only captured where seismic interpretation exists along the available 2D seismic lines. For further information on these data, please refer to: Arnot, M.J. and Bland, K.J. et al. (Compilers), 2016. Atlas of Petroleum Prospectivity, Northwest Province: ArcGIS geodatabase and technical report. GNS Science Data Series 23b.