Topic
 

geoscientificInformation

8090 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 8090
  • The NZGD2000 Government CORS provides the locations of GNSS Continuously Operating Reference Stations operated by GNS Science under the GeoNet project (http://www.geonet.org.nz). Coordinates are from the LINZ Geodetic Database, in NZGD2000. These are split into several different networks: - PositioNZ - stations predominantly funded by LINZ, with some GeoNet funding. These provide a nationwide coverage of ~120km spacing. More info [here](http://apps.linz.govt.nz/positionz/) - GeoNet - stations funded by the GeoNet project. These are located in areas of geophysical interest, usually on the East Coast of the North Island. More info [here](http://www.geonet.org.nz) - SAGENZ - stations funded by the University of Otago, GNS Science, MIT, University of Colorado and UNAVCO. These Southern Alps Geodetic Experiment - New Zealand stations are generally semi-continuous sites. - Tide Gauge - stations co-located with tide gauges at major ports. Data is managed through the GeoNet project also. 30" RINEX data from all of these sites is available from the [GeoNet website](http://www.geonet.org.nz) Real Time data is available from all PositioNZ stations, and some GeoNet stations. For more information, see the [PositioNZ-RT website](http://apps.linz.govt.nz/positionz/rt/index.php)

  • This dataset provides information about the position, height, height datum, height accuracy, mark name, mark type, condition and unique four letter identifier for geodetic marks that have an authoritative height in terms of a vertical datum. Heights are in datums defined at http://www.linz.govt.nz/geodetic/datums-projections-heights/vertical-datums/. All marks will have positions in terms a 3D New Zealand official geodetic datum. The horizontal positions of marks are provided for approximate location purposes only . This dataset only contains marks that are within the New Zealand mainland and offshore islands. The height data for these marks have been generated using precise levelling from datum tide gauges, or has been acquired by 3rd party sources either as levelling observations or direct heights. The source data is from Land Information New Zealand's (LINZ) Landonline system where it is used by Land Surveyors. This dataset is updated daily to reflect changes made in the Landonline. Accuracy ============ The accuracy of normal-orthometric heights are described by height orders. For more information see http://www.linz.govt.nz/geodetic/datums-projections-heights/heights/height-orders/. Note the accuracy applies at the time the mark was last surveyed - see the geodetic database for historical information about height coordinates.

  • A dataset describing exposed bedrock and surficial geology of Antarctica constructed by the GeoMAP Action Group of SCAR (The Scientific Committee on Antarctic Research) and GNS Science, New Zealand. Legacy geological map data have been captured into a geographic information system (GIS), refining its spatial reliability, harmonising classification, then improving representation of glacial sequences and geomorphology. A total 99,080 polygons have been unified for depicting geology at 1:250,000 scale, but locally there are some areas with higher spatial precision. Geological definition in GeoMAP v.2022-08 is founded on a mixed chronostratigraphic- and lithostratigraphic-based classification. Description of rock and moraine polygons employs international GeoSciML data protocols to provide attribute-rich and queriable data; including bibliographic links to 589 source maps and scientific literature. Data are provided under CC-BY License as zipped ArcGIS geodatabase, QGIS geopackage or GoogleEarth kmz files. GeoMAP is the first detailed geological dataset covering all of Antarctica. GeoMAP depicts 'known geology' of rock exposures rather than 'interpreted' sub-ice features and is suitable for continent-wide perspectives and cross-discipline interrogation. Further details are provided at: Cox, S.C., Smith Lyttle, B., Elkind, S. et al. A continent-wide detailed geological map dataset of Antarctica. Sci Data 10, 250 (2023). https://doi.org/10.1038/s41597-023-02152-9 GET DATA: https://doi.pangaea.de/10.1594/PANGAEA.951482

  • This file comprises a NZ wide velocity derived from InSAR and GNSS data between 2003 and 2011 published in “ Hamling, I, J., Wright, T. J., Hreinsdottir, S., Wallace, L. M., 2021 A snapshot of New Zealand's dynamic deformation field from Envisat InSAR and GNSS observations between 2003 and 2011 Geophysical Research Letters. The file contains the full InSAR velocities, standalon GNSS over the same period and coastal Vertical Land Movement as detailed in the manuscrtipt DOI: https://doi.org/10.21420/E1C1-MQ19 Cite data as: GNS Science. (2021). A snapshot of New Zealand's dynamic deformation field from Envisat InSAR and GNSS observations between 2003 and 2011 [Data set]. GNS Science. https://doi.org/10.21420/E1C1-MQ19

  • These data are described in detail by 'Melting and refreezing in an ice shelf basal channel at the grounding line of the Kamb Ice Stream. ApRES observations were made in December 2019 and repeated in December 2020 at the same locations. Data collection and processing followed the method described in Stewart et al. (2019). ApRES dataset.zip' contains raw ApRES data and processed results from a spatial survey of basal mass balance - detailed in Sections 2.2.4 and 3.2.2 of https://doi.org/10.1029/2021JF006532. GET DATA: https://doi.org/10.5281/zenodo.5574647

  • Here we examine the water stable-isotope data from the Roosevelt Island Climate Evolution (RICE) ice core. In this study, we use empirical orthogonal function (EOF) analysis to investigate the relationship between RICE ice-core oxygen-18 isotopes (δ18O) and Southern Hemisphere atmospheric circulation during the extended austral winter (April–November). - Deep Location: 79.364°S, 161.706°W, elevation 550 m a.s.l. - 12/13B Location: 79.362°S, 161.698°W, elevation 550 m a.s.l. - Core depth 763 m. Depth interval provided here: 1.29 to 38.56 m - txt data file, NaN = no data Further details are available at https://doi.org/10.1007/s00382-022-06568-8 GET DATA: https://github.com/demanuelsson/ClimDyn_2022_Matlab/tree/main/data

  • Data of apparent ice thickness from airborne electromagnetic (AEM) surveys of fast ice in McMurdo Sound, Antarctica, carried out in Nov/Dec 2009, 2011, 2013, 2016, and 2017. Values are given for apparent thicknesses derived from both, in-phase and quadrature signals. The difference between both thicknesses is a scaled measure of sub-ice platelet layer thickness. Data are from east-west transects across McMurdo Sound, at fixed latitudes. Data were smoothed and interpolated onto a regular longitude grid (0.001 degree increments). More information can be found in Haas et al. (2021). Related Publication: Haas, C., Langhorne, P. J., Rack, W., Leonard, G. H., Brett, G. M., Price, D., Beckers, J. F., and Gough, A. J.: Airborne mapping of the sub-ice platelet layer under fast ice in McMurdo Sound, Antarctica, The Cryosphere, 15, 247–264, https://doi.org/10.5194/tc-15-247-2021, 2021

  • Sea ice temperature (°C) measured across multiple depths from 20 cm to 207.5 cm at (latitude: -77.775800, longitude: 166.312800): RELATED PUBLICATION: https://doi.org/10.1017/jog.2022.108

  • Sea ice temperature (°C) measured across multiple depths at (LATITUDE: -77.792300, LONGITUDE: 166.514900). RELATED PUBLICATION: https://doi.org/10.1017/jog.2022.108 GET DATA: https://doi.org/10.1594/PANGAEA.880164

  • Sea ice temperature (°C) measured across multiple depths at (LATITUDE: -77.794900, LONGITUDE: 166.334700). RELATED PUBLICATION: https://doi.org/10.1017/jog.2022.108 GET DATA: https://doi.org/10.1594/PANGAEA.880165