From 1 - 10 / 26
  • Using seafloor image data to build single-taxon and community distribution models for seabed fauna in New Zealand waters. Understanding the spatial distributions of seabed biodiversity is essential for effective management of the effects of human activities. However, existing knowledge of seabed faunal distributions comes overwhelmingly from records of museum specimens and fisheries and research trawl bycatch. Data from such sources have been used to build models that predict species and community distributions on the basis of correlations with environmental gradients but because these models are based on presence-only data from disparate sources and times, their predictions are considered uncertain. To improve understanding of seabed fauna distributions around New Zealand, we are developing a new database of occurrences and population densities based entirely on quantitative data from seabed photographic surveys designed to sample these fauna. By modelling the spatial relationships between taxon occurrences and environmental gradients across the region, we are able to predict the likelihood of individual taxa and communities being present in as-yet unsampled areas. In the first phase of the project, we concentrated on Chatham Rise; a region of high importance to commercial fisheries and with the highest density of existing seabed imagery. The models developed here were the first abundance-based models of benthic distributions in the New Zealand region at these spatial scales. In the second phase, we expanded the domain of the predictive models to encompass Campbell Plateau, in the south-eastern sector the EEZ. Combining data from Chatham Rise and Campbell Plateau in a single dataset of benthic invertebrate taxon occurrences and population densities enabled development of up-dated predictive distribution models for a range of individual invertebrate taxa, as well as models of the spatial variability in overall community composition. Rasters are in a geotiff format at a 1000 m resolution cell size and have their relevant projections written in their files.

  • Sand percentage of seafloor sediments from the New Zealand region from nzSEABED database. Data or descriptions of sand content are from the top 10 cm of the seafloor. Sand is defined by its texture/grainsize (all sediment 63μm-2mm) and does not reflect the composition of the seafloor sediment.

  • The data set comprises physical oceanographic measurements made in support of a PhD program investigating the environmental sustainability of large scale mussel aquaculture within the Bay of Plenty continental shelf, New Zealand.

  • Bathmetry dataset from the Queen Charlotte Sound / Tōtaranui and Tory Channel / Kura Te Au Hydrographic Survey LINZ Project HYD-2016/17-01 (HS51). These data are in raster geotiff format and include contour data as shapefiles plus ESRI layer files and QGIS GML files for symbology.

  • From 1997 to 2008, a research programme to determine if fish assemblages in the New Zealand region could be classified into clearly identifiable communities based on their associations with each other and with environmental features was undertaken. The programme resulted in the creation of the Fish Communities Database, from which this dataset was extracted. The data set includes records from 1964 to 2008. These data have been used to show geographical and depth distributions of species from all research tows within the New Zealand EEZ since 2008. The main source of data was the Ministry for Primary Industries research trawl database.

  • This dataset is part of the IMOS Underway CO2 Measurements group. This group is a research and data collection project working within the IMOS Ship of Opportunity Multi-Disciplinary Underway Network sub-facility. The CO2 group sample critical regions of the Southern Ocean, Australian and the New Zealand shelf waters, which have a major impact on CO2 uptake by the ocean. These are regions where biogeochemical cycling is predicted to be particularly sensitive to a changing climate. The pCO2 Underway System measures the fugacity of carbon dioxide (fCO2) along with other variables such as sea surface salinity (SSS) and sea surface temperature (SST) using an automated system. The RV Tangaroa provides data on surface ocean CO2 for the oceans adjacent to New Zealand.

  • The aspect of the bathymetry dataset from the Queen Charlotte Sound / Tōtaranui and Tory Channel / Kura Te Au Hydrographic Survey LINZ Project HYD-2016/17-01 (HS51). Aspect identifies the downslope direction of the maximum rate of change in value from each cell to its neighbors. It can be thought of as the slope direction. The values of each cell in the output raster indicate the compass direction that the surface faces at that location. It is measured clockwise in degrees from 0 (due north) to 360 (again due north), coming full circle. Flat areas having no downslope direction are given a value of -1. These data are in raster geotiff format and include ESRI layer files and QGIS GML files for symbology.

  • The slope of the bathymetry dataset from the Queen Charlotte Sound / Tōtaranui and Tory Channel / Kura Te Au Hydrographic Survey LINZ Project HYD-2016/17-01 (HS51). For each cell of bathymetry, the Slope is the maximum rate of change in value from that cell to its neighbors. Basically, the maximum change in elevation over the distance between the cell and its eight neighbors identifies the steepest downhill descent from the cell. These data are in raster geotiff format and include ESRI layer files and QGIS GML files for symbology.

  • The rugosity of the bathymetry dataset from the Queen Charlotte Sound / Tōtaranui and Tory Channel / Kura Te Au Hydrographic Survey LINZ Project HYD-2016/17-01 (HS51). Rugosity (or roughness) of the seafloor is the ratio of surface area to planar area, and is a measure of terrain complexity. Calculated over 3 x 3 neighbouring cells. In the benthic environment, ecological diversity can generally be correlated with environmental complexity. As such, rugosity is often used to help identify areas with potentially high biodiversity. These data are in raster geotiff format and include ESRI layer files and QGIS GML files for symbology.

  • The curvature of the bathymetry dataset from the Queen Charlotte Sound / Tōtaranui and Tory Channel / Kura Te Au Hydrographic Survey LINZ Project HYD-2016/17-01 (HS51). Curvature is the second derivative of the surface, or the slope-of-the-slope. A positive curvature indicates the surface is upwardly convex at that cell. A negative curvature indicates the surface is upwardly concave at that cell. A value of 0 indicates the surface is flat. These data are in raster geotiff format and include ESRI layer files and QGIS GML files for symbology.