Topic
 

location

144 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 144
  • In June 2014 the Authoritative Streets and Places (ASP) database was decommissioned, and at the same time a new Landonline SUFI was created for each unique road name / locality combination in the Landonline Road Name table. Prior to this change the Landonline Road Name table held the ASP Street SUFI in its Locality field, and a join was made between these two tables in order to populate the Landonline Locality field with the ASP locality name prior to release on the LDS. Following this change the Locality field in the Landonline Road Name table was updated to show the locality name as held in the ASP Street table. This table shows the mapping between the new Landonline Road Name SUFI and the old ASP Street SUFI. The Topo50 Road Centrelines data previously included the name_id attribute (equivalent to asp_sufi), which has now been changed to the new rna_sufi attribute (equivalent to landonline_sufi).

  • **Note:** This layer has been provided to enable potential users to identify the coverage of photography for Mainland NZ flown on behalf of the Crown between 1936 and 2005. The layer shows the extent of each photograph taken. The [NZ Aerial Survey Footprints, Mainland NZ, (1936-2005) polygons layer](https://data.linz.govt.nz/layer/1000-nz-aerial-survey-footprints-mainland-nz-1936-2005-polygons) shows the extent of each survey undertaken, and the [Digitised Historic Aerial Surveys Available for Download (1936-2005)](https://data.linz.govt.nz/layer/2418) layer shows the extents of the surveys digitised and released by LINZ under open license. See [http://www.linz.govt.nz/about-linz/what-were-doing/projects/crown-historic-aerial-photo-archive-scanning-project](http://www.linz.govt.nz/about-linz/what-were-doing/projects/crown-historic-aerial-photo-archive-scanning-project) for direction on how to access the digitised photos. The photos are not downloadable from the LINZ Data Service. The Crown Aerial Film Negative Collection is managed for LINZ by Opus International.You can are order images from the Collection from Opus International in a number of formats, including: - contact prints - enlargements - digital files - precision scans for photogrammetric production - orthophotos You will need to tell Opus International the survey, run and photo number (values in the ‘SURVEY’ 'RUN' and 'PHOTO_NO' attributes) covering your area of interest. Opus International will be able to provide information about the cost of providing images in the various formats. Contact them at: photosales@opus.co.nz or 0800 680 690 There are also a large number of images which previously belonged to New Zealand Aerial Mapping and which are now are available for public use. The extents of these may be added to the LDS in future. You can order these images by contacting Opus International.

  • The STI77-NZGD2000 grid enables the conversion of normal-orthometric heights from the Stewart Island 1977 local vertical datum directly to New Zealand Geodetic Datum 2000 (NZGD2000) ellipsoidal heights. STI77-NZGD2000 is published on a one arc-minute grid (approximately 1.8 kilometres) extending over the benchmarks that nominally define the extent of the Stewart Island 1977 vertical datum (167.2° E to 168.8° E, 46.5° S to 47.5° S). The conversion value is represented by the attribute “delta”, in metres. This grid is a combination of New Zealand Quasigeoid 2016 [NZGeoid2016](https://data.linz.govt.nz/layer/3418) and the [STI77-NZVD2016](https://data.linz.govt.nz/layer/3442) height conversion grid. Where NZGeoid2016 is the reference surface for the New Zealand Vertical Datum 2016 (NZVD2016), while the STI77-NZVD2016 grid models the difference between the Stewart Island 1977 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).

  • The OTP64-NZVD2016 grid enables the conversion of normal-orthometric heights from the One Tree Point 1964 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). OTP64-NZVD2016 is published on a two arc-minute grid (approximately 3.6 kilometres) extending over the benchmarks that nominally define the extent of the One Tree Point 1964 vertical datum (171.3° E to 174.4° E, 40.4° S to 42.7° S). The height conversion grid models the difference between the One Tree Point 1964 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy of OTP64-NZVD2016 is better than 1 centimetre (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).

  • The GSB26-NZVD2016 grid enables the conversion of normal-orthometric heights from the Gisborne 1926 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). GSB26-NZVD2016 is published on a two arc-minute grid (approximately 3.6 kilometres) extending over the benchmarks that nominally define the extent of the Gisborne 1926 vertical datum (177.0° E to 178.6° E, 37.4° S to 39.0° S). The height conversion grid models the difference between the Gisborne 1926 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy of GSB26-NZVD2016 is better than 2 centimetres (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).

  • The Taranaki 1970 to NZVD2016 Conversion Raster provides users with a two arc-minute (approximately 3.6 kilometres) raster image of the conversion of normal-orthometric heights from the Taranaki 1970 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). The height conversion grid models the difference between the Taranaki 1970 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy is better than 2 centimetres (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).

  • The STI77-NZVD2016 grid enables the conversion of normal-orthometric heights from the Stewart Island 1977 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). STI77-NZVD2016 is published on a two arc-minute grid (approximately 3.6 kilometres) extending over the benchmarks that nominally define the extent of the Stewart Island 1977 vertical datum (167.2° E to 168.8° E, 46.5° S to 47.5° S). The height conversion grid models the difference between the Stewart Island 1977 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy of STI77-NZVD2016 is better than 18 centimetres (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).

  • The LTN37-NZVD2016 grid enables the conversion of normal-orthometric heights from the Lyttelton 1937 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). LTN37-NZVD2016 is published on a two arc-minute grid (approximately 3.6 kilometres) extending over the benchmarks that nominally define the extent of the Lyttelton 1937 vertical datum (168.53° E to 174.2° E, 41.3° S to 45.1° S). The height conversion grid models the difference between the Lyttelton 1937 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy of LTN37-NZVD2016 is better than 2 centimetres (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).

  • The BLF55-NZVD2016 grid enables the conversion of normal-orthometric heights from the Bluff 1955 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). BLF55-NZVD2016 is published on a two arc-minute grid (approximately 3.6 kilometres) extending over the benchmarks that nominally define the extent of the Bluff 1955 vertical datum (168.2° E to 168.9° E, 46.3° S to 46.8° S). The height conversion grid models the difference between the Bluff 1955 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy of BLF55-NZVD2016 is better than 3 centimetres (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).

  • The Bluff 1955 to NZVD2016 Conversion Raster provides users with a two arc-minute (approximately 3.6 kilometres) raster image of the conversion of normal-orthometric heights from the Bluff 1955 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). The height conversion grid models the difference between the Bluff 1955 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy is better than 2 centimetres (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).