Keyword

Location

144 record(s)
 
Type of resources
Available actions
Topics
Keywords
Contact for the resource
Provided by
Years
Formats
Representation types
Update frequencies
status
Scale
Resolution
From 1 - 10 / 144
  • The Dunedin-Bluff 1960 to NZVD2016 Conversion Raster provides users with a two arc-minute (approximately 3.6 kilometres) raster image of the conversion of normal-orthometric heights from the Dunedin-Bluff 1960 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). The height conversion grid models the difference between the Dunedin-Bluff 1960 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy is better than 2 centimetres (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).

  • The Auckland 1946 to NZVD2016 Conversion Raster provides users with a two arc-minute (approximately 3.6 kilometres) raster image of the conversion of normal-orthometric heights from the Auckland 1946 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). The height conversion grid models the difference between the Auckland 1946 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy is better than 2 centimetres (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).

  • Geographic locations at which daily tide predictions are available. Official Tide Prediction data is available on the LINZ website at http://www.linz.govt.nz/hydro/tidal-info/tide-tables. THIS DATA DOES NOT REPLACE OFFICIAL TIDE PREDICTIONS AND MUST NOT BE USED FOR NAVIGATION. Tide Prediciton information has been prepared by LINZ from analysis of sea level observations supplied by port companies, regional and district councils and the National Institute of Water and Atmospheric Research Limited (NIWA).

  • The Auckland 1946 to NZVD2016 Conversion Raster provides users with a two arc-minute (approximately 3.6 kilometres) raster image of the conversion of normal-orthometric heights from the Auckland 1946 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). The height conversion grid models the difference between the Auckland 1946 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy is better than 2 centimetres (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).

  • This index enables you to identify the locations of current and historic sea level stations around New Zealand, on offshore islands (including Raoul Island, Chatham Islands and the sub-Antarctic islands), several South West Pacific islands and the Ross Dependency (Antarctica). The attributes attached to each location will enable you to look up tidal levels, obtain relationships between tidal and land-based height datums, access tide predictions on LINZ’s website and find out how much sea level data LINZ has in its archive. See the LINZ website for official [tide predictions](https://www.linz.govt.nz/sea/tides/tide-predictions). View the attached data dictionary for detailed information about the attributes of this dataset. **Accessing sea level data** The data that is used to calculate tide predictions is also available. You can access publically available sea level data where a URL is provided in the data_link column. For other locations, requests for sea level data should be sent to customersupport@linz.govt.nz with “Sea Level Data” in the subject line. Requests must, as a minimum, specify the location and time period that the data is required for. Publically funded data can be released to the public under a Creative Commons licence for reuse. The provision of sea level data funded by third parties may be subject to some delay, as LINZ must obtain permission from the data owner. The owner may also attach conditions to the release of their data.

  • The Lyttelton 1937 to NZVD2016 Conversion Raster provides users with a two arc-minute (approximately 3.6 kilometres) raster image of the conversion of normal-orthometric heights from the Lyttelton 1937 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). The height conversion grid models the difference between the Lyttelton 1937 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy is better than 2 centimetres (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).

  • The Dunedin 1958 to NZVD2016 Conversion Raster provides users with a two arc-minute (approximately 3.6 kilometres) raster image of the conversion of normal-orthometric heights from the Dunedin 1958 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). The height conversion grid models the difference between the Dunedin 1958 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy is better than 2 centimetres (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).

  • The Dunedin 1958 to NZVD2016 Conversion Raster provides users with a two arc-minute (approximately 3.6 kilometres) raster image of the conversion of normal-orthometric heights from the Dunedin 1958 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). The height conversion grid models the difference between the Dunedin 1958 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy is better than 2 centimetres (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).

  • The Gisborne 1926 to NZVD2016 Conversion Raster provides users with a two arc-minute (approximately 3.6 kilometres) raster image of the conversion of normal-orthometric heights from the Gisborne 1926 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). The height conversion grid models the difference between the Gisborne 1926 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy is better than 2 centimetres (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).

  • The Stewart Island 1977 to NZVD2016 Conversion Raster provides users with a two arc-minute (approximately 3.6 kilometres) raster image of the conversion of normal-orthometric heights from the Stewart Island 1977 local vertical datum to the New Zealand Vertical Datum 2016 (NZVD2016). The conversion value is represented by the attribute “O”, in metres. This conversion and NZVD2016 are formally defined in the LINZ standard [LINZS25009](http://www.linz.govt.nz/regulatory/25009). The height conversion grid models the difference between the Stewart Island 1977 vertical datum and NZVD2016 using the LINZ GPS-levelling marks. From the GPS-levelling marks the expected accuracy is better than 2 centimetres (95% Confidence interval). More information on converting heights between vertical datums can be found [on the LINZ website](http://www.linz.govt.nz/data/geodetic-services/coordinate-conversion/converting-between-nzvd2016-nzgd2000-and-local-vertical-datums).